Sains Malaysiana 54(4)(2025): 975-991
http://doi.org/10.17576/jsm-2025-5404-02
Geochemical and
Mineralogical Characteristics of Andesitic Derived Laterite from the Serian
Volcanic, West Sarawak, Malaysia: Potential for Ion-Adsorption-Type Ree Deposit
(Ciri Geokimia dan Mineralogi Laterit Asalan Andesitik daripada Volkano Serian, Sarawak Barat, Malaysia: Potensi untuk Deposit Ree Jenis Ion Penjerapan)
LEDYHERNANDO TANIOU1,2,*, MOHD
BASRIL ISWADI BASORI2 & KENZO SANEMATSU3
1Department of
Mineral and Geoscience Malaysia (Sarawak), Jalan Wan Abdul Rahman, Kenyalang Park, 93712 Kuching, Sarawak, Malaysia
2Geology Programme, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3The National Institute of Advanced Industrial
Science and Technology (AIST), Geological Survey of Japan, Tsukuba, Japan
Received: 20 June
2024/Accepted: 23 December 2024
Abstract
The rare earth elements (REEs)
found in the Earth’s crust are highly sophisticated minerals that have a
significant application in various high-tech industries such as green
technology and defense. Due to the limited study of REE derived from volcanic
rocks, the main objectives of this research are focusing to determine the
geochemical and mineralogical, as well to examine the potential resources of
ion-adsorption type deposits in volcanic rock and their derived laterite
profile from the Serian Volcanic, West Sarawak, Malaysia. Two lateritic
profiles were examined, and the parent volcanic rock is classified as basaltic
trachyandesite in composition with moderate REE content of 209 ppm. In both
profiles the abundance of the REE is subjected to the deep weathering through
CIA (99-100%) that promote the enrichment of REE to the laterite profile up to 1715.98
ppm. The dominance of kaolinite mineral as an absorbent material, coupled with
the absence of RE mineral in the laterite samples, indicates the potential for
ion-adsorption clay deposit with high (>75%) extracted REY content, as
determined by ion-exchangeable analysis. The chondrite-normalized REE pattern
for both profiles were almost flat for parent rock, whereas LREE and HREE were
equally abundant in the laterite profile. However, the TREE significantly
decrease toward the upper part of each profile. This study also demonstrates
that laterites with a high TREE and low Ce anomalies have the highest ion-exchangeable
(REY) fraction relative to the parent rock content, suggesting that
ion-adsorption deposit in this region have the potential to recover REY in
terms of resources quantity.
Keywords: Andesite; ion-adsorption
clay; Malaysia; rare earth element
Abstrak
Unsur nadir bumi (REE) yang terdapat di kerak bumi adalah merupakan mineral termaju yang signifikan kepada pembangunan industri berteknologi tinggi meliputi teknologi hijau dan pertahanan. Disebabkan kurangnya kajian REE yang berasalan daripada batuan volkanik, objektif utama kajian ini memberi fokus untuk mengkaji cirian mineralogi dan geokimia serta mengenal pasti potensi jenis longgokan lempung jerapan ion dalam batuan volkano dan profil luluhawa laterit daripada Volkano Serian, Wilayah Barat
Sarawak, Malaysia. Dua profil laterit telah dikaji dan pengelasan batuan induk volkano menunjukkan batuan berada dalam kumpulan trakit-andesit-basalt dengan kepekatan kandungan REE 209 bpsj. Kandungan REE yang tinggi pada kedua-dua profil luluhawa adalah berkait-rapat dengan kadar luluhawa yang tinggi melalui peratusan CIA (99-100%) yang menyumbang kepada pengayaan REE mencecah 1715.98 bpsj. Kewujudan mineral lempung yang dominan dan bertindak sebagai mineral penjerap dengan tiadanya kehadiran mineral RE yang dikesan dalam sampel laterit mencadangkan kawasan kajian mempunyai potensi kewujudan longgokan lempung jerapan ion dengan kadar pengekstrakan REY yang tinggi (>75%) melalui analisis pertukaran-ion. Corak penormalan-kondrit unsur nadir bumi pada kedua-dua profil juga menunjukkan bentuk yang hampir rata untuk batuan dan keberadaan LREE dan
HREE hampir sama banyak pada profil laterit yang dikaji. Walau bagaimanapun, kandungan TREE dilihat berkurangan ke arah bahagian atas untuk kedua-dua profil. Kajian yang dijalankan juga menunjukkan laterit yang mengandungi kandungan TREE yang tinggi dengan nilai anomali Ce yang rendah mempunyai kadar pertukaran ion REY yang tinggi berbanding kandungan yang terdapat dalam batuan induk, mencadangkan longgokan lempung jerapan ion di wilayah ini berpotensi mempunyai sumber REY dari segi kuantiti.
Kata kunci: Andesit; lempung jerapan ion; Malaysia; unsur nadir bumi
REFERENCES
Abedini, A., Khosravi, M.
& Dill, H.G. 2020. Rare earth element geochemical characteristics of the
late Permian Badamlu karst bauxite deposit, NW Iran. Journal of African
Earth Sciences 172: 103974.
Adi Mabo. 1994. General
geology of Lobang Batu - Mongkos area with emphasis on carbonate sedimentology.
Thesis. University of Malaya (Unpublished).
Aleva, G.J.J. &
Creutzberg, D. 1994. Laterites. Concepts, Geology, Morphology and Chemistry. Wageningen: International Soil Reference and Information Centre (ISRIC).
Atwood, D.A. 2012. The Rare
Earth Elements Fundamentals and Applications. New York: John Wiley &
Sons.
Bao, Z. & Zhao, Z. 2008.
Geochemistry of mineralization with exchangeable REY in the weathering crusts
of granitic rocks in South China. Ore Geology Reviews 33(3-4): 519-535.
Bárdossy, G. & Aleva,
G.J.J. 1990. Lateritic Bauxites. Elsevier.
Chengyu, W., Dianhao, H. &
Zhongxun, G. 1990. REE geochemistry in the weathered crust of granites, Longnan
area, Jiangxi Province. Acta Geologica Sinica ‐ English Edition 3(2): 193-209.
Chi, R., Tian, J., Li, Z.,
Peng, C., Wu, Y., Li, S., Wang, C. & Zhou, Z. 2005. Existing state and
partitioning of rare earth on weathered ores. Journal of Rare Earths 23(6): 756-759.
Colman, S.M. 1982. Chemical
weathering of basalts and andesites: Evidence from weathering rinds. US
Geological Survey Professional Paper 1246.
Duddy, L.R. 1980.
Redistribution and fractionation of rare-earth and other elements in a
weathering profile. Chemical Geology 30(4): 363-381.
Fandrich, R., Gu, Y., Burrows,
D. & Moeller, K. 2007. Modern SEM-based mineral liberation analysis. International
Journal of Mineral Processing 84(1-4): 310-320.
Fedo, C.M., Nesbitt, H.W.
& Young, G.M. 1995. Unraveling the effects of potassium metasomatism in
sedimentary rocks and paleosols, with implications for paleoweathering
conditions and provenance. Geology 23(10): 921-924.
Gu, Y. 2003. Automated scanning
electron microscope based mineral liberation analysis: An introduction to
JKMRC/FEI mineral liberation analyser. Journal of Minerals and Materials
Characterization and Engineering 2(1): 33-41.
Haile, N.S. 1974. Borneo. In Mesozoic-Cenozoic
Orogenic Belts: Data for Orogenic Studies, edited by Spenser, A.M. Geological
Society of London, Special Publications 4: 333-347.
Hamilton, W. 1979. Tectonics
of the Indonesian Region. U.S Geological Survey Professional Paper, 1078.
Henderson, P. 1984. Rare earth
element geochemistry. In Developments in Geochemistry, Vol. 2, edited by
Henderson, P. Elsevier Science Publishers B.V.
Hoshino, M., Sanematsu, K.
& Watanabe, Y. 2016. REE mineralogy and resources. Handbook on the
Physics and Chemistry of Rare Earths. 1st Ed. Vol. 49. Elsevier B.V.
Hutchison, C.S. 2005. Geology
of the North-West Borneo: Sarawak, Brunei and Sabah. Elsevier.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin,
B. & IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A
chemical classification of volcanic rocks based on the total alkali-silica
diagram. Journal of Petrology 27(3): 745-750.
Liechti, P. 1960. The
Geology of Sarawak, Brunei and the west part of North Borneo. Bull.3. Geological
Survey Department, British Territories of Borneo.
Metcalfe, I. 2011. Tectonic
framework and Phanerozoic evolution of Sundaland. Gondwana Research 19(1): 3-21.
Middelburg, J.J., van der
Weijden, C.H. & Woittiez, J.R.W. 1988. Chemical processes affecting the
mobility of major, minor and trace elements during weathering of granitic
rocks. Chemical Geology 68(3-4): 253-273.
Moldoveanu, G.A. &
Papangelakis, V.G. 2012. Recovery of rare earth elements adsorbed on clay
minerals: I. Desorption mechanism. Hydrometallurgy 117-118: 71-78.
Nesbitt, H. 1979. Mobility and
fractionation of REE during wearhering of a granodiorite. Nature 279:
206-210.
Nesbitt, H.W. & Young,
G.M. 1982. Early proterozoic climates and plate motions inferred from major
element chemistry of lutites. Nature 299: 715-717.
Papoulis, D., Tsolis-Katagas,
P. & Katagas, C. 2004. Progressive stages in the formation of kaolin
minerals of different morphologies in the weathering of plagioclase. Clays
and Clay Minerals 52(3): 275-286.
Pimm, A.C. 1965. Serian Area,
West Sarawak, Malaysia. Report 3, Geological Survey of Malaysia, Borneo
Region. p. 92.
Rudnick, R.L. & Gao, S.
2003. Composition of the continental crusts. In Treatise on Geochemistry, edited by Holland, H.D. & Turekian, K.K. Elsevier-Pergamon. pp. 1-64.
Sanematsu, K. & Kon, Y.
2013. Geochemical characteristics determined by multiple extraction from
ion-adsorption type REE ores in Dingnan County of Jiangxi Province, South
China. Bulletin of the Geological Survey of Japan 64(11/12): 313-330.
Sanematsu, K. & Watanabe,
Y. 2016. Characteristics and genesis of ion adsorption-type rare earth element
deposits. Reviews in Economic Geology 18: 55-79.
Sanematsu, K., Kon, Y. &
Imai, A. 2015. Influence of phosphate on mobility and adsorption of REEs during
weathering of granites in Thailand. Journal of Asian Earth Sciences 111:
14-30.
Sanematsu, K., Kon, Y., Imai,
A., Watanabe, K. & Watanabe, Y. 2013. Geochemical and mineralogical
characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Mineralium
Deposita 48(4): 437-451.
Sanematsu, K., Moriyama, T.,
Sotouky, L. & Watanabe, Y. 2011. Mobility of rare earth elements in
basalt-derived laterite at the Bolaven Plateau, Southern Laos. Resource
Geology 61(2): 140-158.
Sanematsu, K., Murakami, H.,
Watanabe, Y., Duangsurigna, S. & Siphandone, V. 2009. Enrichment of rare
earth elements (REE) in granitic rocks and their weathered crusts in central
and southern Laos. Bulletin of the Geological Survey of Japan 60(11-12):
527-558.
Sun, S.S. & McDonough,
W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for
mantle composition and processes. Geological Society Special Publication 42(1): 313-345.
Tan, D.N.K. 1986. Palaeogeographic development of west
Sarawak. Geol. Soc. Malaysia Bull. 19: 39-49.
Tan, D.N. & Lamy, J.M.
1990. Tectonic evolution of the NW Sabah continental margin since the Late
Eocene. Bulletin of the Geological Society of Malaysia 27: 241-260.
Taniou, L., Basori, M.B.I.
& Sanematsu, K. 2022. Geochemistry of rare earth elements (REE) in the weathered
crusts of volcanic rocks in the Serian area, Sarawak, Malaysia. GEOSEA XVII
& NGC 2022.
Taniou, L., Juni, H.M.,
Gendang, R.A., Rahman, A.H.A. & Thomas, H.M.N. 2019. Kajian Tinjauan
Unsur Nadir Bumi, Skandium Torium di kawasan Riih, Serian Sarawak. Report
No. JMG. SWK (MST) 1/2019, Jabatan Mineral dan Geosains Malaysia.
Verplanck, P.L. 2017. The role
of fluids in the formation of rare earth element deposits. Procedia Earth
and Planetary Science 17(39): 758-761.
Wilford, G.E. 1965. Penrissen
Area, West Sarawak, Malaysia. Report 2. Malaysian Geological Survey, Borneo
Region.
Yaraghi, A., Ariffin, K.S.
& Baharun, N. 2020. Comparison of characteristics and geochemical behaviors
of REEs in two weathered granitic profiles generated from metamictized bedrocks
in Western Peninsular Malaysia. Journal of Asian Earth Sciences 199:
104385.
Yusoff, Z.M., Ngwenya, B.T.
& Parsons, I. 2013. Mobility and fractionation of REEs during deep
weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology 349-350: 71-86.
*Corresponding author; email: ledyhernando.t@jmg.gov.my
|